

The Role of Bioinformatics in a Digitalised Bioeconomy Digitalisation in the Bioeconomy: potentials for rural actors SCALE^{UP} & EDIH innovate

online, February 6th 2024 Dr. Martin Riegler

Kompetenzzentrum Holz GmbH

Wood K plus = Competence Center Wood

Key numbers:

• K1 centre (COMET)

KPLUS

- Non-profit
- foundation 2001
- >25 industry partners
- ~130 employees
- Budget: ca. € 10 Mio./a

companies **knowledge transfer** universities

Research topics (examples):

- Material science for renewable resources
 - Process analysis and engineering
 - Digital tools for wood industry

Example "macro fiber" (laboratory to industry):

Dr. Sarah Ritter Post Doc

> **Boris Möseler** Technician

Dr. Martin Riegler Team leader

Wolfgang Gindl-Altmutter Key researcher & Scientific director

Timothy Young

Key researcher

Prof. Benjamin Kromoser Key researcher

Priv.Doz. Michael Grabner Key researcher

Prof. i.R. **Alfred Teischinger** Key researcher

DI Birger Bartuska PhD Student

Mehieddine Derbas, M.Sc. PhD student

Alexandro Saliasi, M.Sc. PhD Student

DI Karl Zechmeister PhD Student

Sepideh Moradivandkolehjouei, M.Sc. PhD Student

Digital Technologies & Sustainable Building

Team

Alexander Schneider, B.Sc. Student assistant

Geo Francis, M.Sc. PhD Student

Jannik Wirth, B.Sc. Student assistant

Key researcher

Prof. Hans-Christian Möhring Key researcher

Universität Stuttgart

Virág Csank, MA Junior researcher

Development digitalisation in research

exemplary review:

- 832 articles in Scopus
- up to 2020
- terms used for search:
 - "Digital* Transform*"
 - "Digital* change*"

Kraus, S., Jones, P., Kailer, N., Weinmann, A., Chaparro-Banegas, N., & Roig-Tierno, N. (2021). Digital Transformation: An Overview of the Current State of the Art of Research. SAGE Open, 11(3). https://doi.org/10.1177/21582440211047576

KPIUS

"Digital approaches" at Wood K plus

Methods:

- Machine learning
- Computer Vision
- Design Of Experiments
- Multivariate statistical models
- Statistical physical models
- Artificial Intelligence
- Chemometry

. . .

- Assistance systems
- Signal analysis (FFT, etc.)

- Hardware:
- Cobots
- 3D scanner
- Laser cutter
 - 3D printers (1 continuous, 1 independent dual extruder)
- Prototype assistance system (spatial augmented reality)
- RGB cameras (Sony)
- Workstation
- AR glasses (Hololens 2)
- VR glasses (HTC Vive Pro 2)
- Optical microphone (ultrasonic airborne acoustic signals)
- Robust micropohne (high temperatures and humidities)

Software:

- MATLAB
- Python
- Abaqus
- Design Experts

KPLUS

Research Lab for

Smart Production of Biomaterials and –structures

Highlights:

- Cobot
 - Max. load 12,5kg
 - Reach 1300mm
 - Repeatability +- 0,5mm
- Cobot
 - Max. load 20kg
 - Reach 1750mm
 - Repeatability +- 0,5mm

• 3D Camera

- Resolution XY (μ m): 60 90
- VDI/VDE accuracy (µm): 35
- Field of view (mm): 71 x 98 100 x 154
- Dist. to object (mm): 165

Hyperspectralcamera

- Wavelengths: 900 1700 nm
- Spacial resolution: 640 pixel
- Framerate: fullscale 670 Hz, 15000 Hz (fewer spectral bands)

Austria's Digital Innovation Hub for Agriculture, Timber and Energy

Austria: DIH innovATE

"Digital Innovation Hubs" Run time: 2021 – 2024 **Free of charge** for Small and Medium Enterprises in Austria

Europe: EDIH innovATE

"European Digital Innovation Hubs" Run time: 2022 – 2025 **Free of charge** for companies with fewer than 3000 employees in Europe

KPLUS

Example: Cobots workshop for wood working

- **Sanding** of wood surfaces by defined pressure through sensors
- Without safety fences easy to install in existing workshops
- easy to carry by one person or flexible use by mobile vehicles

[©] Wood K plus

KPLUS

Calls open for projects in EDIH

- Formats:
 - Prototype bootcamp (applied research question to be answered by digitalisation)
 - Test before invest (using infrastructure incl. support)

- Ongoing submission of topics possible!
 - E-Mail to m.riegler@wood-kplus.at
 - With title, specific question to be addressed, potential approaches

Machine learning for process adaptation in wood industry

M. Riegler, M. Weigl, B. Spangl, T.M. Young, M. Gronalt, U. Müller

Motivation process modelling

alternative raw

materials and new

products

and minimize costs of production

Process modeling of fibreboard production

data mining:

- data collection from 804 variables (process, raw material and final panel) over one month of production
- considering time lags (markers and distances)
- database management (using SQL, Prod IQ)

WOOD KPLUS

Real-time prediction of internal bond strength

Riegler et al. 2012

Interpretation PLSR model – internal bond strength

KPLUS

Acoustic emissions during wood machining processes for classification and ML

Mehieddine Derbas, Prof. Hans-Christian Möhring, Dr. Martin Riegler

KPLUS

Experimental setup

MAKA PE 170 5 axis CNC machining centre

air-borne microphone

power meter

Experimental setup

KPLUS

Design of experiment

- Full factorial
- 2 levels of cutting speed: 60 and 80
- 10 levels of materials
- 5 repetitions each variation
- Total of 100 randomized runs

confusion matrix

/1.2 /0	0.070	
78.4%	21.6%	
84.0%	16.0%	
99.2%	0.8%	
99.2%	0.8%	
99.2%	0.8%	
98.4%	1.6%	
95.2%	4.8%	
96.0%	4.0%	

4.0%

accuracy (val.): 92.16%

(A) ... across the fiber

22

KPLUS

Prediction of board density

KPLUS

Prediction of surface roughness

24

Modeling and Simulation the gluing of wood chips using Lattice Gas Cellular Automata and Random Walk

K PLUS

Carina Rößler, Felix Breitenecker, Martin Riegler

21.02.2018 - MATHMOD 2018, Vienna

Principles of gluing

ploughshare mixer:

wood particles are homogeneously distributed resin is sprayed using nozzles

equally distributed resin droplets on wood particles

KPLUS

Motivation - resin efficiency

Benefits:

- adapt the process on varying raw material properties (softwood, recycling etc.)
- decreased production costs due to lower amount of resin

Lattice

- discretisation using triangles (black)
- different size of wood and resin particles
- resin particles moved by random walk
- wood particles occupy several nodes (hexagons)
- movement of particles according to edges of lattice (coloured triangles)

Simulation results I

Finite Element Method for woodhybrid construction elements

KPLUS

K. Zechmeister, R. Stingl, B. Kromoser, M. Riegler

Motivation

- Focus: building with wood
- Improve wood-hybrid construction elements

Source: https://www.hoho-wien.at/

HoHo Vienna (Holz-Hochhaus)

FEM – Finite Element Method

Traceability of wood using machine learning & computer vision

KPLUS

David Beck-Tiefenbach, Sarah Ritter, Peter Sykacek, Martin Riegler

Why tracing wood?

Motivation

- Buyers of furniture cannot be sure that the wood used comes from sustainable forests
- New EU regulation on "deforestation-free products" since 2023

Goal

Forgery-proof material tracking from the tree to the finished product

Computer vision approach

Idea: Annual ring **=** Fingerprint

(Classical) biometric methods

Gabor filters

Pith estimation

Hand-crafted features

Data-driven (ML) approach

train a convolutional neural network to identify trees → using wood characteristics (year rings, knots, shape, etc.)

Marking approach

- Permanent marking technologies on wood surfaces throughout the entire value chain
- Development of suitable environment friendly dyes for wood surfaces on various species or surfaces
- Robust dyes in rough environments
- Using unique codes together with machine data in secure IT-architecture
- Linking with quality parameters of wood specimens
- Sharing data along wood value chain

[©] Wood K plus

Computer Vision & Assistance Applications in Wood Research

OD

KPLUS

Birger Bartuska, Sarah Ritter, Carina Rößler, Martin Riegler

Image analysis for impregnated railway sleepers

- Crosssections were imaged with visible light and UV
- Sample area was measured and compared to "heartwood" area and non-impregnated area.

KPIUS

Image analysis - Swelling and Shrinkage of DVS Samples

- automatic measurement of sample dimensions
- Cooperation with Universität Hamburg

Original image

Automated angle detection

Image rotated for analysis

Nopens, M., Riegler, M., Hansmann, C., & Krause, A. (2019). Simultaneous change of wood mass and dimension caused by moisture dynamics. *Scientific reports*, *9*(1), 1-11.

KPLUS

Object Detection for Assisted Manual Assembly

Link: video assistance system

Link: video research project "prefabrication 4.0"

Bartuska, B., Teischinger, A., Riegler, M. (2022) Effects of Spatial Augmented Reality Assistance on the efficiency of Prefabricating Timber Frame Walls. Wood Material Science and Engineering DOI: 10.1080/17480272.2022.2085528

KPLUS

bibliography

- Derbas, M., Frömel-Frybort, S., Laaber, C., Riegler, M. (2021) Sound analysis of mechanical wood cutting processes as a basis for adaptive process control. In: 9th Hardwood Proceedings - Part II. with special focus on "An underutilised resource: Hardwood oriented research". Sopron, Hungary
- Derbas, M., Jaquenmond, A., Frömel-Frybort, S., Güzel, K., Möhring, H.C., Riegler, M. (2023) Multisensor data fusion and machine learning to classify wood products and predict workpiece characteristics during milling. CIRP: Journal of manufacturing science and technology, 47: 103-115
- Riegler, M., Spangl, B., Weigl, M., Kuncinger, T., Wimmer, R., Young, T.M., Müller, U. (2012) Real-time simulation of a feedforward control process adaptation at the manufacturing of fiberboards. 2nd Biennial International Conference on Processing Technologies for the Biobased Products Industries (PTF BPI), 6.-7.11.2012, Georgia, USA
- Riegler, M., Spangl, B., Weigl, M., Wimmer, R., Müller, U. (2013) Real-time process adaptation in the manufacture of high-density fiberboards using multivariate regression analysis and feedforward control. Wood Science and Technology, 47: 1243-1259
- Riegler, M. (2017) Closing the technological gap within statistical models for producing wood-based composites. 11th Annual International Conference on Statistics: Teaching, Theory & Applications, 26.06.2017, Athens, Greece
- Rößler, C., Riegler, M., Breitenecker, F. (2018) Modeling and simulation of moving wood chips and resin droplets within a resinating mixer using lattice gas cellular automata. 9th Vienna International Conference on Mathematical Modelling, 21.-23.2.2018, Vienna
- Nopens, M., Riegler, M., Hansmann, C., Krause, A. (2019) Simultaneous change of wood mass and dimension caused by moisture dynamics. Scientific Reports, 9(1): 10309

additional literature

- Riegler, M., André, N., Gronalt, M., Young, T.M. (2015) Real-time dynamic simulation of continuous bulk material flow to improve the statistical modelling of final product strength properties. International Journal of Production Research, 53(21): 6629–6636
- Pernkopf, M., Riegler, M., Gronalt, M. (2019) Profitability gain expectations for computed tomography of sawn logs. European Journal of Wood and Wood Products, 77: 619–63
- Rößler, C., Breitenecker, F., Riegler, M. (2020) Simulating the Gluing of Wood Particles by Lattice Gas Cellular Automata and Random Walk. Mathematics 8:988

Thank you for your attention

Contact:

00

mmm

Dr. Martin Riegler Kompetenzzentrum Holz GmbH Konrad Lorenz Straße 24 A-3430 Tulln

Tel.: +43 (0)1 47654 89125

E-Mail: m.riegler@wood-kplus.at Homepage: www.wood-kplus.at

93